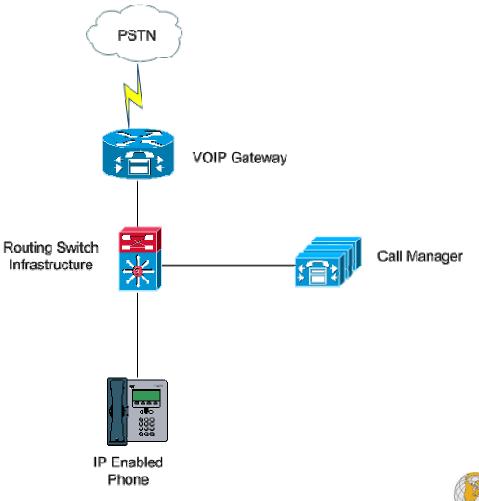
Ron Shuck, CISSP, CISM, CISA, GCIA

Infrastructure Security Architect Spirit AeroSystems

Voice Over IP Security



Overview

- VOIP Components
- Common Threats
- How Threats are Used
- Future Trends

VOIP Components

Routing and Switching Infrastructure

- Provides basic network connectivity and transport
- Infrastructure services (DHCP, DNS, etc.) provide critical services for the VOIP systems
- Delay, bandwidth, and packet delivery are dictated by these systems
 - Quality of Service (QoS)
 - Service Level Agreements (SLA)
- Provides compartmentalization of information systems

VOIP Gateway

- Provides conversion of calls between the data network and the Public Switched Telephone Network (PTSN)
- Primarily uses trunks for PSTN connectivity
- Can be used to relay call signaling to Internet VOIP providers
- Can provide VOIP termination from systems on the Internet

Call Manager

- Performs the functions of a traditional PBX and is the core of the VOIP system
 - Maps internal extensions
 - Routes calls to VOIP gateways, internal extensions, or external numbers
 - Tracks call utilization
 - Controls call flow on the network
- Cisco Call Manager uses Skinny Client Control Protocol (SCCP) for signaling between the Call Manager and phones
- The Call Manager is an application sitting on a traditional Microsoft Windows or Linux platform

VOIP Enabled Phone

- The VOIP phone provides the user the entry point into the phone system
- Uses various access medias
 - Wired
 - Wireless
 - Softphone
- Encodes voice communications using a codec for encoding and compression
- Contacts the Call Manager for configuration and management
 - Initial configuration via TFTP
 - Reliant on the Call Manager for functionality

Common Threats

- Denial of Service (DoS)
- Eavesdropping
- Interception/Modification

Denial of Service

- DoS attacks are common
 - Unintentional DoS (most common)
 - General Worm/Malware
 - Intentional Insider
 - Intentional Outside
- Signs of a DoS Attack
 - Poor network performance beyond VOIP
 - Inability to make calls
 - Phone service suddenly stops
 - Massive traffic flows
 - IPS/IDS alerts

DoS RSI - Flooding

Flooding

- Traditional attacks such as SYN Flooding, Malformed packets, etc
- Distributed Denial of Service Attack using 'Botnet' to attack public facing services
- Weaknesses in the network infrastructure equipments underlying operating system or configuration
- Mis-configured systems that communicate on the network
- Goal is to make voice quality so low it is unusable
- Defenses
 - Network segmentation
 - Implementing QoS
 - Hardening infrastructure to NSA or CIS standards
 - Keeping network Infrastructure patched
 - Proactive network monitoring and management

DoS RSI - QoS Manipulation

- QoS provides network based traffic prioritization used to give VoIP precedence
- Attackers can abuse this functionality to give bogus attack traffic priority
 - Manipulating Differentiated Services Control Point (DSCP) bits
 - Producing bogus RTP, SCCP, SIP, or other traffic that may be protected by VOIP systems
- Goal to render QoS ineffective and lessen the resources needed for the attack
- Defenses
 - Network segmentation
 - QoS trust mechanisms
 - Proactive network monitoring and management

DoS RSI - Infrastructure Attacks

- Attacks against network services used in VOIP
 - DHCP Exhaustion Requesting DHCP addresses until none remain
 - Attacks Against DNS DNS poisoning, UDP flooding, or other attacks
 - Compromise network infrastructure
 - Device Access
 - Exploit routing protocols
 - Implement Access Control Lists
- Goal is to render the network infrastructure unable to support VOIP applications
- Defenses
 - Use DCHP Snooping (Cisco)
 - Harden DNS Servers
 - Harden network infrastructure according to NSA or CIS guidelines
 - Use secure routing protocols and practices

DoSVOIP Gateway

- Vulnerable to many of the same attacks as the routing and switching infrastructure
- Additional vulnerabilities
 - Flooding SIP requests to user resources or tie up PSTN trunks
 - Flooding SIP requests to tie up resources
- Goal is to make the PSTN inaccessible to the voice network
- Defenses
 - Network segmentation
 - Infrastructure hardening
 - Proactive monitoring and management

DoS - Call Manager

- Vulnerable to network, OS, and application level DoS attacks
- DoS vulnerabilities include
 - Flooding attacks discussed for infrastructure
 - Single packet attacks
 - Weaknesses in the Call Manager software or OS
 - Flooding registration requests
- Goal is to render the Call Manager unable to service calls
- Defenses
 - Patch management for Call Manager servers
 - Network Segmentation
 - Network Intrusion Prevention System (NIPS)
 - Host-Based Intrusion Prevention (HIPS)

DoS - VOIP Enabled Phones

- VOIP phones are vulnerable to many of the same attacks as the RSI & CM
- Unique vulnerabilities
 - Registration attacks
 - DHCP exhaustion
 - Phone configuration weaknesses
- Goal is to render the phone inoperable
- Defenses
 - Network segmentation
 - Strong phone authentication
 - Harden network infrastructure

Eavesdropping

- VOIP networks are inherently easier to eavesdrop on than traditional phone systems
 - Traditional techniques used to sniff networks can be used to intercept conversations
 - Attacks can be executed in a switched environment to intercept conversations
 - Trivial for insiders in an IT group to intercept conversations
- Numerous threats exist from eavesdropping
 - Espionage
 - Extortion/Blackmail
 - Unauthorized information disclosure
 - Wiretapping and unauthorized employee monitoring

Eavesdropping RSI by IT

- IT network administrators have easy access to tap traffic undetected
 - Using managed switch functionality (SPAN, RSPAN)
 - Insert sniffer on device in the normal traffic flow
- Tools such as Wireshark, Cain & Able, and various other sniffing tools exist that reassemble traffic flow
- Goal to monitor network conversations as they traverse the network
- Defenses
 - Background checks on potential IT staff
 - Traditional counter intelligence methods
 - Encrypting VOIP communications
 - If eavesdropping is suspected by IT, communicate items out of band
 - Perform regular 3rd party audits of IT

Eavesdropping RSI by Outside Attacker

- An outside attacker must first gain access to the network to intercept traffic
 - Unsecured wireless access points
 - Remote Access (VPN, SSL, Dial-up)
 - Compromised system
 - Physical access to the facility
 - Malicious software
- Interesting traffic is intercepted
 - Segment sniffing
 - SPAN ports
 - ARP cache poisoning, ARP flooding, & DNS poisoning can be used to sniff in a switched network

Eavesdropping RSI by Outside Attacker (Cont)

Goal is to covertly gather VOIP traffic for analysis

- Private information/Espionage
- Helpdesk password changes
- Call/number harvesting
- Decode Dual Tone Multi-Frequency (DTMF) tones
 - Credit card, Social security numbers, Voicemail password

Defenses

- Network segmentation
- Encryption of VOIP traffic
- Using network infrastructure features such as DHCP snooping, ARP protection, MAC limits, and other protection mechanisms
- Harden infrastructure according to NSA or CIS guidelines
- Defense-in-depth security program

Eavesdropping Call Manager

- An attacker must have access to the network & the Call Manager
 - Using an exploit
 - Username or password guess
- Methods to Eavesdrop
 - Redirect calls through bogus VOIP proxy
 - Review Call Manager logs to view source and destination of calls
 - View other call log information
- Goal is to gather basic usage patterns and manipulate phone behavior
- Defenses
 - Patch management of the Call Manager
 - Host & Network based IPS
 - Network segmentation

Eavesdropping VOIP Gateway

- Eavesdropping from the inside network facing interface is a key target
- If the VOIP gateway terminates call from the Internet, those calls can be easily intercepted
- Goal is to intercept call from the primary network exit point to the PTSN
- Defenses
 - Identical to RSI
 - Additionally if calls are allowed from the Internet, VPN should be used to secure communications

Eavesdropping VOIP Enabled Phone

- The configuration of the phone is sent via TFTP which transmits configuration information in clear text
 - Identify Call Manager
 - Identify phone extension
 - Gather detailed configuration information
- Phone configuration information can be used to retrieve dialing information
- Goal is to gather phone configuration information and view calling behavior
- Defenses
 - Use Transport Layer Security (TLS) or other cryptography for phone to call manager connectivity
 - Network segmentation

Interception/Modification RSI

- Interception of VOIP traffic can be used to launch a Man-In-The-Middle (MITM) attack
 - Attacker relays traffic between victim and itself
 - Repackages traffic and forwards it to the destination
- This can be used to manipulate voice traffic
 - Replay, insert, or omit voice conversations
 - Redirect calls to a different destination
 - Directing traffic to a non-existent destination
- Goal is to manipulate traffic without the users knowledge
- Defenses
 - Use Transport Layer Security (TLS) or other cryptography for phone to call manager connectivity
 - Harden network infrastructure to NSA or CIS standards
 - Use switch features such as ARP inspection, DHCP spoofing, and MAC address control

Interception/Modification VOIP Gateway

- If an attacker can control the VOIP gateway they can;
 - Redirect calls going to the PSTN to alternate numbers
 - Redirect or monitor inbound calls
 - Manipulate Caller ID information
 - Bypass Call Manager defined dialing rules
- If the gateway is accessible from the Internet, mis-configured access rules can allow attackers to route calls through the PSTN
- Goal is to control the flow of voice traffic to and from the PSTN
- Defenses
 - Harden VOIP gateways
 - Monitor gateways for abuse
 - Network segmentation
 - Don't allow connections from the Internet without VPN

Interception/Modification Call Manager

- The Call Manager is the nerve center for the VOIP network and the most valuable target for an attacker
 - Provides phone management
 - Provides call routing
 - Provides call rules
 - Provides call accounting
- Unique Security Issues
 - The Call Manager is dependent on the host OS security & its subcomponents
 - Some VOIP vendors do not release critical patches at the same time as the operating system vendor
 - Limits to the system hardening that can be performed
- Control of the Call Manager can be gained through exploiting the operating system, applications, or configuration
 - Software vulnerabilities
 - Weak configurations

Interception/Modification Call Manager (Cont)

- The Call Manager can be manipulated to
 - Direct calls both inside and outside of the network
 - Control phone configuration
 - Bypass call rules
 - Manipulate call accounting
 - Change security parameters
- Goal is to have control of the VOIP system
- Defenses
 - Patch management
 - Host & Network Based Intrusion Prevention
 - Network Segmentation
 - Proactive network monitoring and management

How These Threats Are Used

- Fraud
- Theft of Service
- Espionage
- Sabotage
- Extortion

Fraud

- Manipulation of phone system for verifications to provide bogus authorization or reversed to get consumer information
 - Credit card approval
 - Wire transfer approval
 - Vendor fraud
- Manipulation of Caller ID
 - Support traditional fraud (boiler rooms)
 - Securities fraud
- Manipulate outbound calling
 - Direct calls to 900 numbers
- Gather consumer information though eavesdropping

Theft of Service

- Open VOIP gateways with ports open to the Internet
 - Hackers locate through scanning
 - Direct calls through your gateway and PSTN
- Create extensions that are not logged in the accounting system
 - Obscure source of call
 - Employee long distance abuse
 - Facilitating insider trading
- Insider resell of long distance using remote access

Espionage

- Wiretapping with the purpose of intercepting calls to provide a competitive advantage for an outside organization
 - Tapping VIP phones
 - Getting access to VIP voicemail
 - Tapping helpdesk or IT lines for further system access
- Providing unauthorized access to conference call bridges through Call Manager manipulation
- Using call history to profile the organization
- Masking extensions to facilitate social engineering

Sabotage

- Using DoS attacks to drop phones at critical times
 - Launch DoS during disaster against first responders
 - DoS attack for phone intensive organizations
 - Drop phones in commodities trading
- Disgruntled employees
 - Manipulate QoS settings to provide poor call quality
 - Create scripts to randomly assign extensions
 - Redirect inbound or outbound calls
- Malware based DoS from general malice

Extortion/Blackmail

Use of information gathered from eavesdropping

- Phone records
- Conversations
- Voicemail
- Threats of DoS attack if a ransom is not paid
 - Major threat for commodities trading organizations
 - Call centers can lose millions during down time
- Use by disgruntled IT staff with access to these systems
- System can be used to make ransom requests that are difficult to trace

Future Threats

- SPAM Over Internet Telephony
- Integrating VOIP into Traditional Crime
- Physical/Electronic Attacks

SPAM Over Internet Telephony

- The expansion of VOIP will lead to gateway to gateway calling over the Internet
 - Reduces long distance cost to the cost of bandwidth
 - Long distance calling will be the same price as an email
- SPAM over Internet Telephony will explode as email SPAM has with email
 - High volume of telemarketing calls
 - Filtering mechanisms will have to be implemented

Integrating VOIP into Traditional Crime

- Mobility of VOIP technology can allow highly mobile call centers
 - Use of compromised networks for boiler room operations
 - Rapid setup/tear down with Internet access being the only requirement
- Use of VPN and VOIP by organized crime for secure communications
 - Use of compromised networks for high profile activities
 - Compromise of VOIP networks and resell of phone service for illicit use
 - Use of system 'hopping' to thwart law enforcement

Physical/Electronic Hybrid Attack

- Combing physical and electronic attacks to facilitate high profile crime
- For example we'll consider a robbery
 - Five minutes before robbery a DoS attack is launched against the Video over IP camera system
 - All calls to 911 or security are directed to a confederate in a van outside with an IP phone that is configured as an extension on the company's phone system connected via wireless access points
 - Inbound calls to security are directed to the confederate as well
 - All calls from security are configured to call a phantom extension

Conclusion

- VOIP Technology can provide many positive benefits for organizations, but the risks must be evaluated
- Before implementing VOIP
 - Perform a risk assessment
 - Design security into your deployment plan
 - Use defense-in-depth
 - Develop a strategy for monitoring and management

