Glenda WhitbeckGlobal Computing Security Architect Spirit AeroSystems

Cryptography Review

January 7, 2011

History of Cryptography

History

- 2000 B.C. Egyptian Hieroglyphics
- Atbash Hebrew
 - Original alphabet mapped to different letter
 - Type of Substitution Cipher monoalphabetic (multiple alphabets would be polyalphabetic)
- 400 B.C. Spartans scytale cipher
 - Papyrus wrapped around a staff
- 100-44 B.C. Caesar cipher
 - Shifted alphabet by 3 letters
 - Alphabet is the algorithm, key is the # shifted
- 16th Century Vigenere Cipher
 - Polalphabetic that used table where intersection between plaintext and key word repeated as necessary produced ciphertext
- World War II Germany's Enigma machine

Services of Cryptosystems

- Confidentiality Read by Authorized Entities
 Only
- Integrity Data hasn't been altered
- Authentication Verifies identity of user
- Authorization Provides key or password to allow access
- Nonrepudiation Ensures sender can't deny sending the message

Strength of a Cryptosystem

Algorithm

- Confusion (substitution)
- Diffusion (transposition)
- Known or Secret More Secure? Kerckhoff's Principle Algorithm should be Publicly Known
- Key Management
 - Protect Keys and Keep Secret
- Length of the Key
- Initialization Vectors
 - Random values used with algorithms to prevent patterns
- Implementation

Ciphers

Running Key Cipher

- Use of things around you
 - Example Book #, Page #, Line #, 5th Word

Concealment Cipher

- Hidden in a message (like every 4th word)
- Block Cipher
 - Message divided into blocks
 - Each block is encrypted separately
- Steam Cipher
 - Encrypts individual bits of the message
 - One bit is XORed to message bits

Encryption Algorithms

Symmetric

Characteristics

- Confidentiality only
- •Not Scalable n users need n(n-1)/2 keys
- •Key Management Difficult
- •Used to encrypt Bulk Data

Block Ciphers

- •S-boxes for substitution & transposition
- •Modes (ECB, CBC, CFB, OFB, CTR)
- •Examples DES, 3DES, Blowfish, Twofish, IDEA
- •RC5,RC6, AES, SAFER, Serpent

Steam Ciphers

- More difficult to get right
- Key stream generators
- •XOR bits
- •Example RC4

Asymmetric

Characteristics

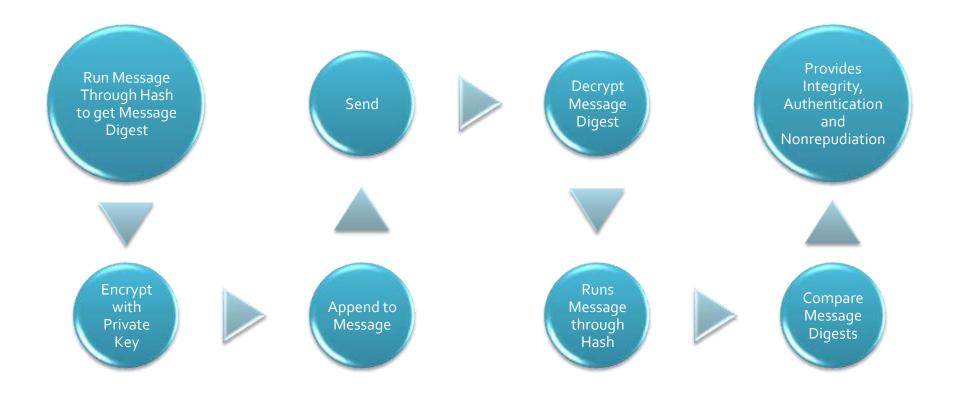
- •Used by Public Key Cryptography
- •Used to Encrypt Keys (except Diffie-Hellman)
- •Provides Authentication and Non-Repudiation
- •Based on one-way function which is easier to compute one direction and hard the opposite direction
- •Private key knows how to get through the "trapdoor"
- Examples
- •El Gamal Slowest
- Eliiptic Curve Cryptosystems most efficient
- •LUC
- •Knapsack Insecure

Digital Signatures

Provide

- Authentication
- Nonrepudiation
- Integrity

Uses Hash


- For Integrity
- Sender uses hash to create message digest
- Receiver also uses hash and compares

Uses Asymmetric Algorithm

- To encrypt hash with senders Private Key for Nonrepudiation and authentication
- Unencrypted with senders Public Key and compared

Digital Signature

Hashing Algorithms

128 bit MD

MD₂

MD₄

MD₅

Ripe MD-128

160 bit MD

SHA-1

Ripe MD-160

Others

SHA-256,384,512

> HAVAL Variable

Tiger – 192bit digest

Security of Messages

- Encryption provides confidentiality
- Running through a hash provides integrity
- Digital Signatures provide Authentication,
 Nonrepudiation and Integrity
- Encryption with Digital Signature provides Confidentiality, Authentication, Nonrepudiation and Integrity

Public Key Infrastructure

RA

- Certification Registration
- Verifies Identification of Requestor
- Acts as Broker
 Between User and CA

CA

- Trusted Organization or Server
- Creates, Signs and Hands out Certificates
- Vouches for Person's Identity
- Certificate Revocation List (CRL)

Certificate

- Serial #
- Version #
- Identity Info
- Algorithm
- Lifetime Dates
- Signature of Issuing Authority

Email Standards

- Multipurpose Internet Mail Extension (MIME)
- Secure MIME (SMIME)
 - Encryption
 - Digital Signing
 - Extends MIME Standard
 - Encryption and Hashing Algorithms Can be Specified
 - Follows Public Key Cryptography Standards (PKCS)
 - Provides Confidentiality (encryption), Integrity (Hashing), Authentication (through X.509 Certs) and Nonrepudiation (Signed Message Digests)
- Pretty Good Privacy

Internet Security

- HTTP Secure (HTTPS)
 - HTTP running over SSL (Secure Sockets Layer)
 - Client Generates Session Key and Encrypts with Server Public Key
 - Protects Channel
- Secure HTTP (S-HTTP)
 - Protects Each Message
- Secure Electronic Transfer (SET)
 - Proposed by Visa and MasterCard For More Secure Credit Card Transactions
 - Involves Issuer, Cardholder, Merchant, Acquirer, Payment Gateway
 - All Would Have to Upgrade Software So Not Fully Implemented Yet
- Secure Shell (SSH)
 - Tunneling Mechanism

Internet Security

- Internet Protocol Security (IPSEC)
 - Method of setting up a secure channel
 - Open modular framework
 - Uses two basic protocols
 - Authentication Header
 - Provides authentication and integrity
 - Encapsulating Security Payload
 - Provides both those and confidentiality
 - Each Device has Security Association's (SA)
 - Configurations it Can Support
 - Used to Negotiate
 - Needs 1 Inbound and 1 Outbound for All Connections
 - Security Parameter Index (SPI)
 - Keeps track of all the SA's
 - Key Management
 - De Facto Standard is Internet Key Exchange (IKE)

Attacks

- Cipher-Only
- Known-Plaintext
- Chosen-Plaintext
- Chosen-Ciphertext
- Adaptive....
- Differential Cryptanalysis
- Linear Cryptanalysis
- Side-Channel Attacks
- Replay Attacks
- Algebraic Attacks
- Analytic Attacks
- Statistical Attacks

