

"Analysis of Recent Internet Worms – How to protect against them"

Mike Stute October 2, 2003

Agenda

- Global DataGuard
- Current Security Situation
- Blaster Effects
- Meet The Sapphire Worm
- Sapphire on the Internet
- Sapphire's effect
- What's Next?
- Case Studies
- Intrusion Prevention and Detection

Incidents Rising

The number of security incidents and confirmed attacks detected by businesses are up 36.6% in the first three months for 2003.

Source: CERT CC ©

Vulnerabilities Key Problem

Source: CERT CC ©

Security & Privacy in 2003: Complex and Uncertain

The Evidence of Attack

Port 135 Data July 1st – Aug 10th

Source: Johannes Ullrich, SANS Institute

Infection Timeline

Aug 10th – MSBlaster

Global DataGua

Blaster Toolkit

- Uses RPC DCOM Vulnerability (release July 16th)
 - Fast to produce
- Based on dcom.c, uses same backdoor on port 4444. (release July 27th)
 - A collection of code no originality here
- Simple extension, downloading worm via build in tftp daemon
 - The lesson? TFTP has been the transport of 3 of the 5 last major worms
- DDOS payload ('windowsupdate.com')
 - Is this target significant? Yes, this is the sight required to fix the vulnerability the worm depends on.
- Self Disabling Why?
 - Clear the board for the next version
 - Encourage laziness from smaller companies and home users

Blaster Identifiers

- UPX 'packed'
 - Some pieces were hidden, others were not
- 'strings'
 - msblast.exe
 - I just want to say LOVE YOU SAN!!
 - billy gates why do you make this possible ? Stop making money and fix your software!!
 - windowsupdate.com
 - SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 - Start %s tftp -i %s GET %s

Blaster Variants

- Insignificant variations
 - Except for the Fix!
- Altered strings, filename.
 - Why? Evade IDS and a new message
- Changed DDOS target.
 - Spread the wealth
- Not widely distributed
 - Blaster had already changed the target base
 - Too late to gain turf

Blaster Counter Measures

- Patching
 - Patching is the only real counter measure.
 - Detection can help but not prevent
 - Sniping and shunting are limited because it was TCP
- Firewall (port 135) CAREFULL!
 - Closing port 135 will provide limited protection but block many standard Microsoft services
 - Avoid blocking port 4444. Minimal additional protection and possible side effects.
 - Doesn't help with attacks from the inside. Easily bypassed by roaming systems.
- Watch for Infected Systems.
 - IDS/Firewall/tcpdump –minimizes time to control and contain

Analysis of the Fallout

- More than 200,000 infected systems (likely 500,000).
 - Spoofed sources makes it difficult.
- Spread within a couple of hours
 - But only after it was "fixed"
 - Very common, very necessary Microsoft service
- No notable geographic / network preference.
 - Did not a specific target (CHAK) or "local affinity" (Nimda)
- DDOS against windowsupdate.com was averted by turning the domain off.
 - But it did have affect systems by requiring users to update systems using Windows Update

Hack Response System - Hello Nachia

Nachia/Welchia ICMP Traffic

Source: Johannes Ullrich, SANS Institute

Remedy Worse then Disease

Nachia Port 80 (Aug. 18th)

Source: Johannes Ullrich, SANS Institute

Information Systems Security Association

Nachia (Nachi, Welchia, MSBlaster-D, Lovsan-D)

- A Good Worm gone bad?
- Flooding local networks with ICMP
- Patching systems
 - Patching can be dangerous if performed without control
 - Lion was the first to do this
- Removing MS Blaster
- Using RPC DCOM and WebDAV exploit
- Installing back door
 - The halo is a bit tarnished
- Predatory worm
 - This wasn't about fixing, this was about turf
- Protecting infected system against take over like autorooters and bots
- Complex code higher skill level

Effectiveness of Recent Worms

Name	Date	os	Service	Infected Machines	Time
Lion	March 2001	Linux	BIND	10,000?	Days
Code Red	July 2001	Windows	IIS	200-400k	Days
Nimda	Oct 2001	Windows	IIS	100-200k	Hours
SQL Slammer	January 2003	Windows	IIS	100-200k	Minutes
MSBlaster	August 2003	Windows	IIS	300k?	Hours

Despite increased awareness, worms are more effective then ever

SoBig.F – The Virus Strikes Back

- 6th version in Sobig Series
 - Skill level is increasing
- Launched via UseNet
 - Best way to stay anonymous
 - Fast impact for virus worm
- Blended Threat
 - Uses file shares as well as E-mail to spread.
- Prays on users to click attachments
 - Voluntary infection mechanism
- Sophisticated auto-update and other features (Backdoors).
 - Third worm to have an update feature but first virus

Sobig - update

- Increased Tactical Ability
 - Sobig used sophisticated time synchronization to send all infected systems to the same set of update servers.
 (Friday 3pm EDT, 7 pm GMT)
 - Very effective DDoS
- Update servers where identified and shut down (all but one)
 - That was enough to get a new target list
 - Some reports of updated master server list.
- Overall: update had no significant impact
 - IDS did the job in identifying the threat early enough to allow a reponse

Meet Sapphire/Slammer

```
25-JAN-03 00:32:42.519303
                                                         ____167.1434: udp 376
                                    1.189.2267 >
                                                         bd
                                                              lE...ÈÖ..≘.ĕĐÖÚF.∣
                              00
                                                              | As...Û.......
                             01
                01 - 01
                       01 - 01
                                  01 01 01 01 01 01 01
      01 01 01
                             01
                       01 01
                             01
                   01
                                  01 01 01 01 01 01 01 01
                   01
                                  01 01 01 01 01 01 01 01
                                  01 01 01 01 01 01 01 01
                                  O1 01 01 01 01 dc c9 b0
                   \mathbf{O1}
                                  O1 O1 70 ae 42
                                                              Bë........p.B.p.|
                   01 01
                                                              | B....hÜÉ.B..|
                   90 90
                                            c9 b0 42 b8
                                                              | ...1É..Páý5....P|
                31 c9 b1 18
                                           01 01 01 05
                                                              |.åQh.dllhel32hke|
                                           33 32
                                                              |rnQhounthickChGe|
                b9 6c 6c
                                                              | tTf.11Qh32.dhws2|
                65 74 51 68 73
                                                              f.etQhsockf.toQ|
                                            66 b9 74 6f 51
                6e 64 be 18
                                        8d 45
                                                              | hsend....B.EÖPŸ. |
                             10
                                                      ff 16
                e0 50 8d 45
                                                              | P.EàP.EŏP♥.P....|
                                                              | B....=U.iOt.....|
                                        74 05 be 1c
                                                              | BV. VÐ1ÉQQP.Ñ....|
             16 ff d0 31 c9
                             51
                                  51 50 81 £1 03 01 04 9b
                                                              |.ä...Q.EİP.EÄPŸ|
                01 01 01 51 8d
                                  45 cc 50 8b 45 c0
                                                     50 ff
                                                              | .j.j.j.yDP.EÄP.E|
                6a 02
                                        8d 45 c4 50
                                                              |ÀPŸ..Æ.Û.ó≺aÙÿ.E|
      c0 50 ff
                16 89 c6 09
                                        3c
                                           61 d9 ff 8b 45
                                                              | . . . 0 . . . Áā. . ÂÁá. ) |
                   8d 14
                                                     08 29
                                                              | Å....Ø.E.j..E.P1|
                                  8d 45 03
                                                              | ÉQf.fix.Q.E.P.E.P|
         51 66 81 fl 78 01 51
                                            50 8b 45 ac 50
                                                              l ÿÖĕÊ l
      ff d6 eb ca
```


Life Before Sapphire – 05:29:00

Sat Jan 25 05:29:00 2003 (UTC)

Number of hosts infected with Sapphire: 0

http://www.caida.org

Copyright (C) 2003 UC Regents

Life After Sapphire – 06:00:00

Sat Jan 25 06:00:00 2003 (UTC)

Number of hosts infected with Sapphire: 74855

http://www.caida.org

Copyright (C) 2003 UC Regents

"The Internet is Down"

Dissecting the Worm

- Contains simple, fast scanner in a small worm with a total size of 376 bytes
- With headers, the payload is a single 404-byte UDP packet limited only by bandwidth
 - Code Red 4kb latency limited
 - Nimda 60kb latency limited
 - Fast transfer Mechanism "Fire and Forget"
- UDP does not require a response from the target
- What a concept! Sapphire did not have an actual payload.

Global DataGual

The Effect of the Worm

- Global Internet dropped to 72% reachability
- Sapphire peaked at over 55 million scans per second in under 3 minutes
- Sapphire doubled in size every 8.5 seconds
- Sapphire would have scanned over 90% of the entire Internet within 10 minutes but it was bugged!
- Sapphire infected more than 90% of vulnerable hosts within 10 minutes
- Sapphire used a pseudo random number generation (PRNG) algorithm
- Due to a flaw in the PRNG Sapphire was unable to scan the entire Internet

How the Internet was Effected by Sapphire

- Uses same protocol as DNS (UDP)
- UDP is fast and easy to route
- Sapphire's scanning was constrained only by available network bandwidth
- The Internet cratered to a 72% reachability

Internet Reachability Definition

- Typical web connection requires three look-ups
 - A DNS lookup converts the web name to an IP

Domain

The three look-ups may traverse up to 7 servers resolve in IP

Domain

- Three packets are then sent to establish the web connection
- A minimum of 7 to 10 total packets are sent to establish a web connection to begin browsing
- A 25% packet failure rate basically equates to 100% transmission failure

Local Effect of Sapphire

- Because Sapphire was bandwidth limited
 - If you were infected, it would consume all available LAN bandwidth
 - If you were not infected, Internet services were unavailable including remote access to Intranets (upstream source)

Statistics of Sapphire

Country	% Victims
United States	42.87
South Korea	11.82
UNKNOWN	6.96
China	6.29
Taiwan	3.98
Canada	2.88
Australia	2.38
United Kingdom	2.02
Japan	1.72
Netherlands	1.53

Top Level Domain	% Victims
UNKNOWN	59.49
net	14.37
com	10.75
edu	2.79
tw	1.29
au	0.71
ca	0.71
јр	0.65
br	0.57
uk	0.57

At least 74,856 machines were infected from a 13 monthold vulnerability that had a 42 kb patch available

Implications of Sapphire

- Smaller populations are now vulnerable to attack
 - Typically a population of less than 20,000 were not viewed as a target
 - Sapphire demonstrated that a population of 20,000 hosts could be infected in less than one hour
- The technique now exists for the next worm to have a small payload and be bandwidth limited regardless of protocol (UDP or TCP)

Intrusion Prevention Overview

- IDS is about detection
- IPS is about automating responses to detection
- IDS has always been able to perform IPS there is nothing new but marketing

Basic Intrusion Prevention Methods

- Shunting
 - Programming the router/firewall to block attackers
 IP, protocol, and/or service
 - Can be performed in-line or out-of-band
- Sniping
 - Spoofing targeted server and sending the attacker a "stop" response (reset the connection)
 - Performed out-of-band

Intrusion Prevention Challenges

- High false positive rate
- In-line versus passive
 - Single point-of-failure
 - Router is programmable over the network
 - Write wire to the IPS device is a security risk
- Voluntary DoS
 - Partner, vendor, or customer IPs can be spoofed
 - Tools like "Snot" will flood the IPS with simulated attacks causing IPS to shut down connection to otherwise legitimate traffic

Intrusion Prevention Versus Sapphire

- Sapphire was a single UDP packet there isn't a connection to snipe
- The attack was coming from everywhere too many IPs to shunt
- Sapphire was so fast IPS systems could not shunt every IP fast enough
- Raw Sockets allow source spoof Unix always had them but Windows does to now

Intrusion Prevention the GDG Way

demoa 2001-12-14

Time	Priority Type	Name	Envelope	C	Count	SSV
01:27:43		SCAN:ICMP-BCST	<u>114.104.23.11 > 29.14.255.255</u>		5	0

demoa 2001-12-16

Time	Priority	Туре	Name	Envelope	C	Count	SSV
12:52:38	4	E	SCAN:ICMP-BCST	<u>114.104.23.11 > 29.14.255.255</u>		3	1
12:54:22	4	E	SCAN: UDP-BCST-53	114.104.23.11 > 29.14.255.255		3	2
12:54:22	4	E	SCAN: UDP-BCST-19	114.104.23.11 > 29.14.255.255		3	3
01:05:45	4	E	SWEEP: TCP-80	114.104.23.11 > 0.0.0.0		3	5
01:06.18	4	E	SWEEP:TCP-139	114.104.23.11 > 0.0.0.0		3	7

demoa 2001-12-20

Time	Priority	Туре	e Name		Envelope	C	Cor	unt	SSV
11:43:44	3	E	FUF:TCP	114.104	1.23.11 > 29.14.15.7			2	15
11:43:44	3	E	FUF:TCP	114.104	1.23.11 > 29.14.15.34			2	19
11:42:54	4	E	TCP:SCAN	114.104	1.23.11 > 0.0.0.0		2	2	13
11:43:44	4	E	FUF:TCP	114.104	1.23.11 > 29.14.15.5		2	2	15

demoa 2001-12-25

Time	Priority Type		Name	Envelope	C	Count	SSV
02:41:09		S	WEB:CGI-COUNT	114.104.23.11 > 29.14.15.5	<u></u>	1	24
02:41:10	○ 2	S	WEB:CGI-JJ	114.104.23.11 > 29.14.15.5		1	27
02:41:07	3	S	WEB:CGI-BROWSABLE	114.104.23.11 > 29.14.15.5		1	13
02:41:08	3	S	WEB:CGI-CACHEMGR	114.104.23.11 > 29.14.15.5		1	17

Contact Information

Mike Stute

Office: 972.980.1444

Email: mstute@globaldataguard.com

